

List comprehensions
Python list comprehensions provide a short and easy way to create lists.

The list comprehensions contains an expression, a for statement, and an optional if statement.

Exercise:
	
Create a list:
myList1 = ['Michael', 'Neil', 'Kevin', 'David', 'Anthony', 'Ferdi']

Create a list comprehension, before we do this that’s firstly create an empty list:
myList2 = []

Next place an expression inside the empty list:	
myList2 = [i for i in myList1]

The above list comprehension runs a for loop which goes through each item in myList1. The i before the for loop populates myList2.

Question
Why not just state myList2 = myList1?

To answer the above question consider the following:
myList2 = [i for i in myList1 if len(i) > 6]

The above statement only allows items which satisfy the if statement to be added into myList2.

Exercise:
	
Let’s create a new list of integers (myList3), and a list comprehension (myList4) that multiplies the integers in myList3 by the value 2.

myList3 = [1,2,3,4,5]

myList4 = [i*2 for i in myList3]
print(myList4)

Why did I need to create myList3? Let’s try producing the list comprehension in one statement.

myList4 = [i*2 for i in range(6)]
print(myList4)

Let’s add an if statement to myList4 list comprehension.

myList4 = [i for i in range(11) if i%2 == 0]
print(myList4)

Exercise:
	
Create a list comprehension which contains only odd numbers between 0 – 10, the result should return [1, 3, 5, 7, 9].

Result:

Option 1: 	print([x for x in range (1,10,2)])

Option 2: 	print([x*2+1 for x in range(5)])

Option 3: 	print ([i for i in range(10) if i%2 == 1])

Determine the output of the following statements:
	
myList = []
for x in range(10):
 myList.append(x**2)
print(myList)

Result:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

	
myList = [x**2 for x in range(10)]
print(myList)

Result:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Determine the output of the following statements:
	
myList = [x**2 for x in range(1,20)if x%2 ==1]
print(myList)

Result:
[1, 9, 25, 49, 81, 121, 169, 225, 289, 361]

A closer look at the above list comprehension:
	Step 3
	Step 1
	Step 2

	[x**2
	for x in range(1,20)
	if x%2 ==1]

	Perform the calculation x**2, x being the value passed from step 2.

The result of the calculation will be added to the myList list.
	Generates a sequence of values from 1 to 20 (excluding 20), incrementing by 1.

X holds the value of each increment. This value is passed to step 2, one increment at a time.

	Test the value assigned to x passed from step 1.

If the value meets the condition (an odd number), it is passed to step 3

Determine the output of the following:
	
a = "We are all enjoying Python programming".split()
print(a)

	
Result:
['We', 'are', 'all', 'enjoy', 'Python', 'programming']

	
b = [x for x in a if x.count('y')==0]
print(b)

	
Result:
['We', 'are', 'all', 'programming']

	
c = [x for x in a if x[0] == 'a']
print(c)

	
Result:
['are', 'all']

	
d = [x.upper() for x in a if x[0].isupper()]
print(d)

	
Result:
['WE', 'PYTHON']

The Python Main Block
As discussed in week one, Python is an interpreted language because Python programs are executed by an interpreter. Python is also considered a scripting language. It operates as a script of sequential statements executed top to bottom. A collection of statements can be placed within a block (function) which can be used over and over again.

It is vital all programs have a commencement point. In Python, programmers use the main block as a commencement point to execute their programs.

The Python main block:
if __name__ == '__main__':
 main()

The main block is placed at the bottom of the program. Why is this so? To answer this question that’s have a look at a basic program:

	
def main():
 print('Hello, World!')

	The main function

	
if __name__ == "__main__":
 main()

	The main block

When a Python script is executed the interpreter reads the script from top to bottom searching for the first non- indented non-defined function. It searches for the main block to run the program. As evident in the example above, the main block calls the main() function within the program.

If the main block was above the main function, the program will return the error (NameError: name 'main' is not defined) when run.

Try it:
if __name__ == "__main__":
 main()

def main():
 print('Hello, World!') 		Result: NameError: name 'main' is not defined

Why did we get this error message? Before answering this question, consider the above statement “when a Python script is executed the interpreter reads the script from top to bottom”.

Explanation:	__
		__
		__
		__

Back to our basic program:
	
def main():
 print('Hello, World!')

	The main function

	
if __name__ == "__main__":
 main()

	The main block

Although the main bock calls the function main()function, there is no relationship between the string __main__ assigned to the variable __name__ and the function main(). You can create your own function name instead of main(), but be aware programmers worldwide understand the function main() as the entry point to a program.

A module (program) can either run on its own __name__ = '__main__', or can be called by another module.

Consider the modules below:

# a.py						
							
def main():
 print("A is running on its own.")

if __name__ == "__main__":
 main()
else:
 print("A is imported")			Result: A is running on its own.

b.py

import a

def main():
 print("B is running on its own.")

if __name__ == "__main__":
 main()
else:
 print("B is imported")			Result: A is imported
							Result: B is running on its own.

Working with Files

Write to a File

Open the myText.txt text file in the existing directory, if the myText.txt file does not exist create it in the existing directory.
The 'w' mode opens the file for writing.

myFile = open('myText.txt', 'w')

The write() file method writes a string to an open file.
myFile.write("Michael enjoys Python programming.\nWe all enjoy Python programming.")

The close() file method closes the file.
myFile.close()

Read from a File

Open the existing myText.txt file in the existing directory.
The 'r' mode opens a file for reading

myFile = open("myText.txt", "r")

#The read() file method read a string from an open file.
myString = myFile.read()

print (myString)
myFile.close()

Read a given number of bytes from a file:

myFile = open("myText.txt", "r")

Read the first 7 bytes from the file.
myString = myFile.read(7)
print (myString)
myFile.close()

Result:
Michael

Append to an Existing File

Open the existing myText.txt file in the existing directory.
The 'a' mode opens the file for appending (adding).

myFile = open("myText.txt", "a")

myFile.write("\nHello World, we are programming in Python.")

myFile.close()

File modes can be any of the following:
· 'r'for reading.
· 'r+'for reading and writing.
· 'w'for writing.
· 'a' for appending.
· On Windows there is also a 'b' option for binary reading and writing ('rb', or 'wb').

The readline() File Method

myFile = open("myText.txt", "r")

#The readline() file method reads a file in a line at a time.
myString = myFile.readline() # This reads the first line.

print (myString)

myFile.close()

How do you read the second line?
myFile = open("myText.txt", "r")
#The readline() method read a string from an open file.
myString = myFile.readline() # Read the first line.
myString = myFile.readline() # Read the second line.
print (myString)

myFile.close()

Read all lines using a loop:
myFile = open("myText.txt", "r")
for myString in myFile:
 print (myString)
myFile.close()

Result:
Michael enjoys Python programming.

We all enjoy Python programming.

Hello World, we are programming in Python.

The readlines() File Method
	
myFile = open("myText.txt", "r")

file.readlines() reads the file line by line and places it in a list
myString = myFile.readlines()
print (myString)

myFile.close()

Result:
['Michael enjoys Python programming.\n', 'We all enjoy Python programming.\n', 'Hello World, we are programming in Python.']

myFile = open('myText.txt','r')
for myString in myFile.read().split('\n'):
 print (myString)
myFile.close()

Result:
Michael enjoys Python programming.
We all enjoy Python programming.
Hello World, we are programming in Python.

EXTRA
	
#Count total lines in a file
myFile = open("myText.txt", "r")
totalLines = 0
for line in myFile:
 totalLines += 1
print ((totalLines))

or

myFile = open("myText.txt", "r")

lines = myFile.readlines()

print (len(lines))

myFile.close()

	

Rename a File
import the os module
import os

Rename a file from myText.txt to myText2.txt
os.rename("myText.txt", "YourText.txt")

Remove a File

import os

Delete file myText2.txt
os.remove("myText2.txt")

Create a Directory

import os

Create a directory "python" in the current directory.
os.mkdir("python")

ICTPRG301 - Session 05		Page 1 of 9
